Info card

Inductive sensors
（i）This info card is to be regarded as a supplement to the main position sensors catalogue and to the individual data sheets．For further information and contact addresses please visit our homepage at www．ifm．com

Intended use

While in use the products are exposed to influences which may have an effect on function，life，quality and reliability of the product．
It is the customer＇s responsibility to ensure that the products are suitable for the intended application．This applies in particular to applications in hazardous areas and with adverse environmental influence such as pressure，chemicals， temperature fluctuations，moisture and radiation as well as mechanical stress，especially if the products are not installed properly．
Using the products in applications where the safety of people depends on the function of the product is not permitted Non－compliance may result in death or serious injuries．

Operating principle of an inductive proximity switch

Coil and capacitor form an LC resonant circuit，also called basic sensor
Eddy current losses in electrically－conductive materials are used for a switching signal．

（1）Connection
（5）Pot core
（2）Housing
（6）Coil
（3）Downstream electronics
（7）Alternating electromagnetic field＝active zone
（4）Capacitor
（8）Target＝electrically conductive material

Important Glossary	
Active zone／active face	Area above the sensing face in which the sensor reacts to the approach of the target．
Output function	Normally open： object within the active zone $>$ output is switched． Normally closed： object within the active zone $>$ output is blocked． Programmable： choice between normally closed or normally open． Positive switching： positive output signal（to L－）． Negative switching： negative output signal（to L＋）．
Rated insulation voltage	AC units depending on UB： 140 V AC or 250 V AC DC units with protection class II： 250 V AC DC units with protection class III： 60 V DC
Rated short－circuit current	for short－circuit－proof units： 100 A
Rated impulse withstand voltage	AC units depending on UB： $140 \mathrm{~V} \mathrm{AC}=2.5 \mathrm{kV}$ or $250 \mathrm{~V} \mathrm{AC}=4 \mathrm{kV}$ （气 overvoltage category III） DC units with protection class II： 4 kV （气 overvoltage category III） DC units with protection class III： 60 V DC 0.8 kV （气 overvoltage category II）
Power－on delay time	The time the sensor needs to be ready for operation after application of the operating voltage（in the millisecond range）．

Nominal sensing range S Real sensing range S_{r} Useful sensing range s_{u} Reliable sensing range $=$ operating distance S_{a} ： Safe switch－off distance

$=$ characteristic value of the unit
＝individual deviation at room temperature between 90% and 110% of S_{n}
$=$ switch point drift between $90 \%\left(\mathrm{~S}_{\mathrm{umin}}=\mathrm{S}_{\mathrm{a}}\right)$ and $110 \%\left(\mathrm{~S}_{\mathrm{umax}}\right)$ of S_{r}
＝reliably switched between 0% and 81% of S_{n}
$=S_{U_{\text {max }}}+$ max．hysteresis $=143 \%$ of S_{n}

Sensing range（referred to the standard target）

Info card

Inductive sensors
Cont
Correction factors

Values \rightarrow data sheet Exception K1 units: Same sensing range for all
Influence of the target size

x axis: ratio actual target / standard target

Lateral approach and ranges (valid for structural steel, e.g. S235JR)

(1) Typical switch-on curve (for slow approach)
(2) Typical switch-off curve (for slow approach)
(3) Poor repeatability
(4) Good repeatability

Good repeatability of the switch point means: The closer the target is positioned to the sensing face, the better.
General recommendation:
$a=10 \%$ of the nominal sensing range

(1) Distance to the background
(2) Recommended target distance
(3) Recommended degree of coverage of the sensing face
(4) Recommended target size

Tips on flush and non-flush mounting in meta

Installation instructions cylindrical designs
Flush:
Non-flush:

Installation instructions rectangular designs

Flush:

Non-flush:

$h=a n y$

If the required clear space is not observed for non-flush units, the sensor is predamped. This may lead to permanent switching.

Possibly deviating installation instructions for rectangular units with increased sensing range \rightarrow Notes on mounting and operation.

Info card

Inductive sensors

Minimum clearance for installing units of the same type (side-by-side installation)
Applies to cylindrical and rectangular sensors.
Flush:

(1) Side-by-side installation only possible with different oscillator frequency.

Electrical connection

(1) Use a miniature fuse according to the technical data sheet, if specified. Recommendation: Check the safe functioning of the unit after a short circuit.
(2) Negative switching
(3) Positive switching
(4) Sensor 1
(5) Sensor n

Connection systems

Two-wire technology (negative or positive switching)

3-wire technology

4-wire technolog
(negative or positive switching) (positive switching, normally closed and normally open) nomaly路

Non-flush:

Series connection (AND)

Series connection of 3 -wire units

Max. 4 units. Power-on delay times,
voltage drops and current consumptions add up. $\mathrm{U}_{\mathrm{B} \text { min }}$ (sensor) and $\mathrm{U}_{\text {HIGH min }}$ (load) must remain unchanged.

Series connection of 2-wire units

Not recommended because of undefined operation when blocked! Use special types which can be connected in series (max. 2 units) Voltage drops add up.

Parallel connection (OR)

Parallel connection 3-wire units
The current consumption of all non-switched units adds up. The units can be used in combination with mecha nical switches.

Parallel connection 2-wire units Not possible.

Configuration of cables

and connectors

Pin connection of the US-100 connections (view onto

 the plug of the unit)Colours: BK: black, BN brown, BU: blue, WH: white
Standard configuration for 3-wire DC:

		Cable	Terminal chamber	US-100 plug
$\mathrm{L}+$		BN	$1 / 3$	Pin 1/BN
$\mathrm{L}-$		BU	$2 / 4$	Pin 3/BU
Output	-	BK	X	$\operatorname{Pin} 2 / \mathrm{WH}$ Pin 4 / BK

$$
\begin{array}{ll}
\text { Pin 4: BK } \\
\text { Pin 1: } \mathrm{BN}
\end{array}=\because \quad \begin{aligned}
& \text { Pin 3: BU } \\
& \text { Pin 2: WH }
\end{aligned}
$$

For the cable and the pin configuration as well as the unit data of special versions please refer to the wiring diagrams in our main catalogue for position sensors.

